

经营模式

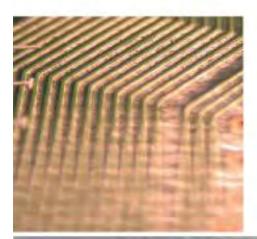
COPPER ANDINO 是一家智利公司,开发了多项专利技术,将高分子聚合物和树脂表面转变为抗菌表面。这些技术创新将铜盐和锌盐融入高分子结构。

CODELCO 是世界领先的产铜公司。

INCuBa 由 Codelco100%控股,推广铜的新型应用。

IICC BIOTECH 是中智合资企业,专注新技术的开发和一体化。

一起促成和推广与生产厂和商业公司的战略联盟,向市场推出满足顾客需要的产品。



铜在人类历史上的应用

人类与铜:铜使人类在 史前时期最早利用的 金属之一,是性质单 纯、不与其它元素结合 的少数几种金属之一。

2008 年, EPA (美 国环保署) 宣布铜是 唯一具有抗菌性质 而不污染环境的金 属

在人体内

铜有助于形成血红细胞,维 护血管、神经、免疫系统和 骨骼。铜是人类生命不可缺 少的微量元素。

生物特性

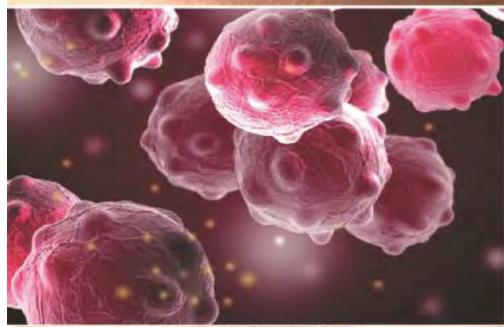
铜具有抗菌特性,能够杀死病毒、细菌和真菌。

卫生特性:

铜具有天然的快速消灭有害微生物能力。

为什么铜对人类是安全的?

铜是日常饮食中的**基础** 元素。


辅助身体重要功能:

免疫系统 神经系统 皮肤形成(胶原蛋白) 痊愈过程 人体具有**消化**或吸收通过皮肤、粘液**进入体内铜元素** 的能力。

铜的作用

抗菌

研究证明了铜的抗菌作用,能消灭细菌、真菌、病毒和微生物,包括:

- ⇒ 大肠杆菌
- ⇒ 李斯特菌
- ⇒ 沙门氏菌
- ⇒ 肠道菌
- ⇒ MRSA (耐甲氧西林金黄色葡萄球菌)
- ⇒ 甲型流感
- ⇒ 毛发藓菌
- ⇒ 念珠菌

皮肤

铜有助于保持皮肤

- 年轻有弹性
- 肤色肤质

有助于痊愈过程。

专利申请(INAPI) 134-2010

● 专利申请(PCT)81-2011

● 专利申请(INPI)20120104532-2012

其它 2 项专利在申请过程中

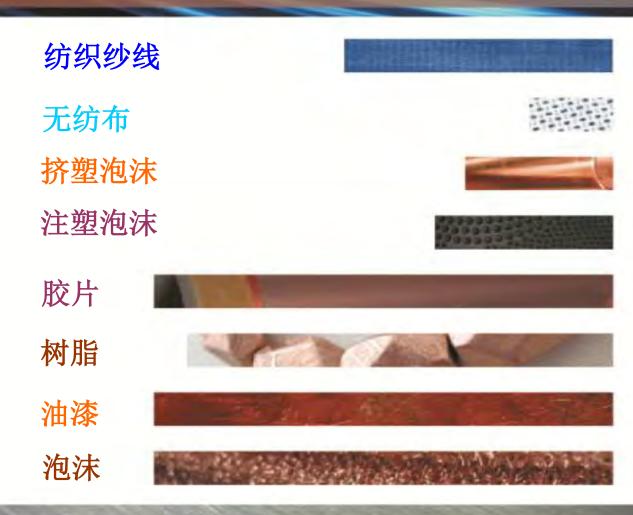
技术

铜(盐)

具有抗菌特性,能够 消灭病毒、细菌和真 菌,改善肤质

二者合力, 更强 抗菌效果

即是 CU-TECH 专利技术


锌(盐)

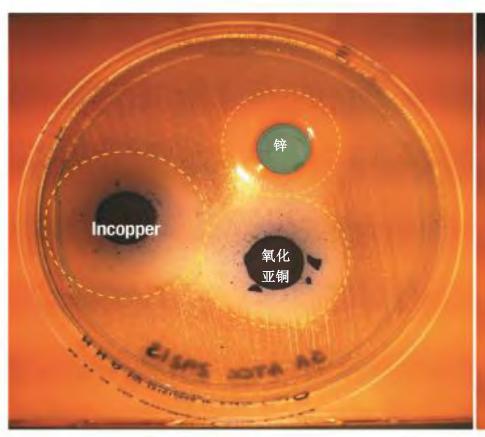
具有抗菌特性,有助 于加速伤口愈合,改 善肤质

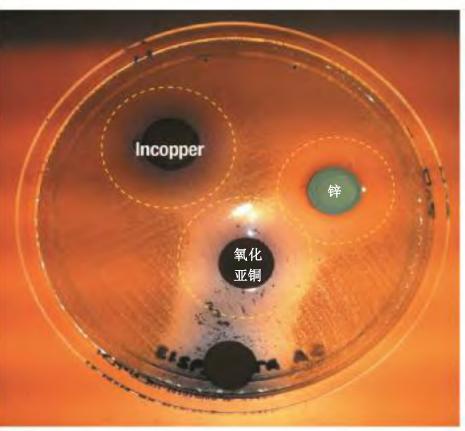
应用

为什么我们的技术更具有优势?

	INCOPPER 专利技术	其它含铜技术
活性成分	铜盐+锌盐	铜盐
抗菌效果	双重作用:铜/抗菌, 锌/ 抗菌	单铜
有利于皮肤	双重作用:铜+锌	单一作用
皮 肤 内 层 对 铜 的吸收	锌盐抑制铜离子的吸收	铜离子可能被皮肤吸收
UV 过滤	锌盐有助于过滤 UV	无此功能

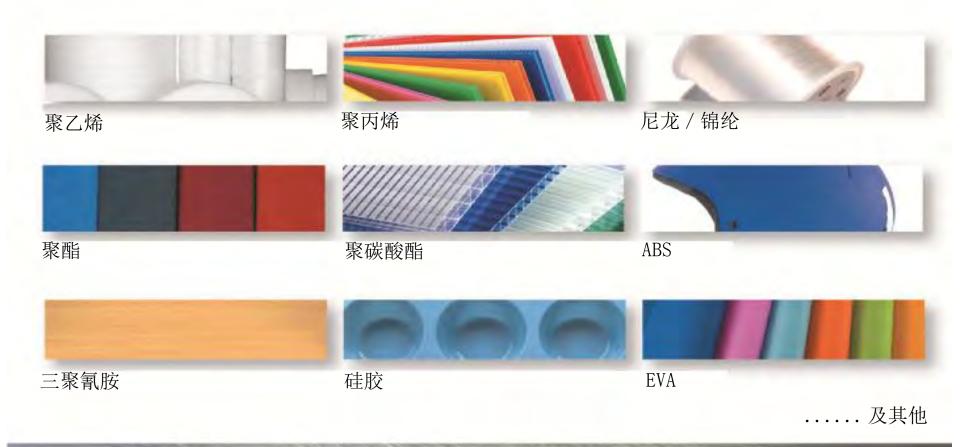
锌盐用于:婴儿护肤膏,治疗尿湿皮疹,以及用于香波和治疗皮肤不适(包括湿疹、牛皮藓、烧伤、粉刺、疖子和腿部溃疡)的护肤品


抗菌技术

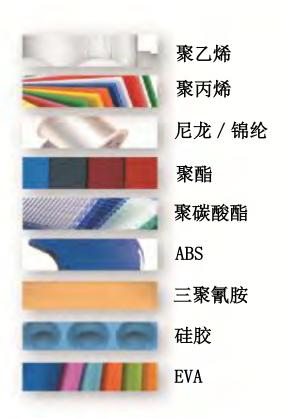


			其它技术	CU-TECH
	有机物	银	铜	铜/锌
效果/范围	对某些特定 病菌有效	抗菌,抗病毒, 抗真菌	抗菌,抗病毒, 抗真菌,抗尘 螨	比铜的抗菌范 围更广
安全性/皮肤	取决于浓度	无不良反应	安全, 无不良 反应现象	比铜更安全
对皮肤作用	无	无	有助于改善肤质	相比单纯的 铜,更有利于 皮肤

铜锌合力效果



我们在哪些方面应用了 CU-TECH®专利技术?


对这些聚合物和树脂进行了研究和应用

我们在哪些方面应用了 CU-TECH®专利技术?

对这些聚合物和树脂进行了研究和应用

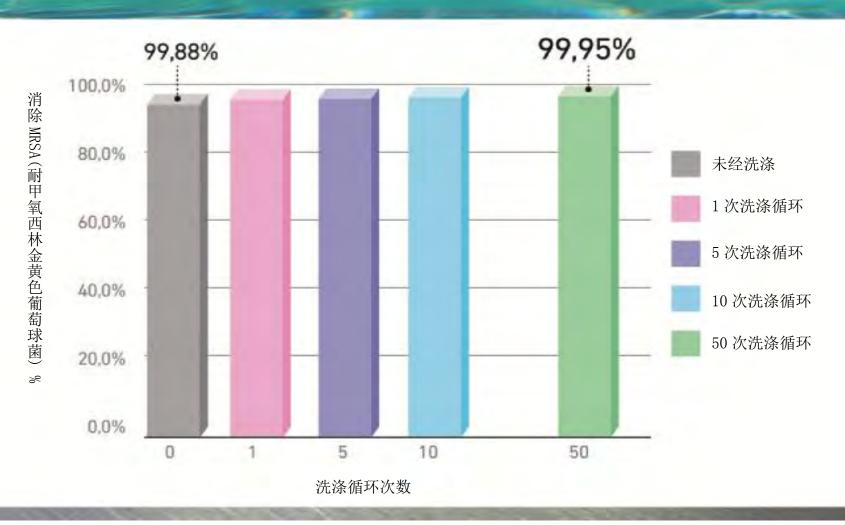
+99%

消灭真菌和细菌

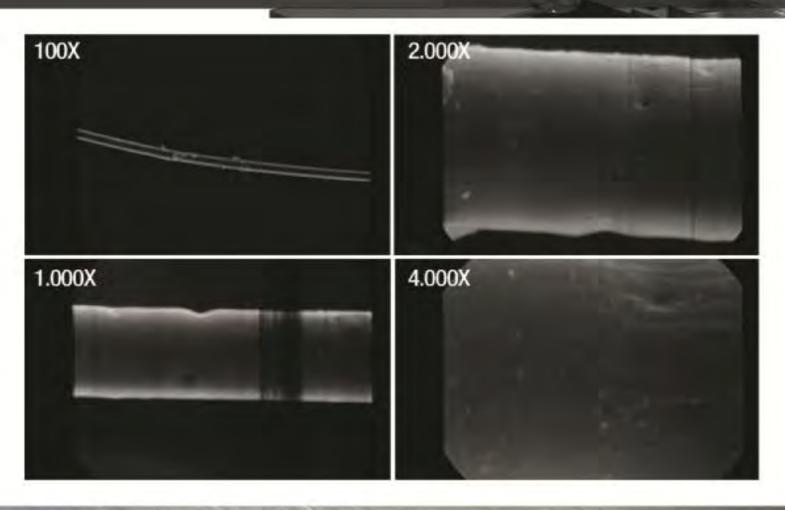
金黄色葡萄球菌,大肠杆菌,假单胞菌,白色念珠菌,毛发藓菌

CU-TECH®在聚合物的应用

含铜抗菌纱线技术


	含铜%	利	弊
涂层	0. 1-0. 4	应用于表面,高度抗 菌活性	长期使用和洗涤后失 去效果
染色/着色	>0.05	容易应用	抗菌活性低,洗涤后 失效
Cu-Tech	0. 7-4. 0	抗菌活性很高,多次 洗涤后仍然效果显著	
铜与聚合物结合	0. 1-0. 2	多次洗涤后仍然有效	抗菌活性低

聚酯应用——纺织纱线


CU-TECH®纱线抗菌效果耐洗涤

CU-TECH®纱线在电子显微镜下

应用 INCOPPER®专利技术的抗菌键盘和鼠标

为什么必须使用 INCOPPER®专利技术?

电脑键盘和鼠标所含细菌数量是马桶座圈上的30倍以上。

鼠标和键盘是**传播病毒和细菌的工具,导致各种病菌传染**, 例如大肠杆菌、伤寒沙门氏菌和淋球菌。

80%细菌传染来自接触

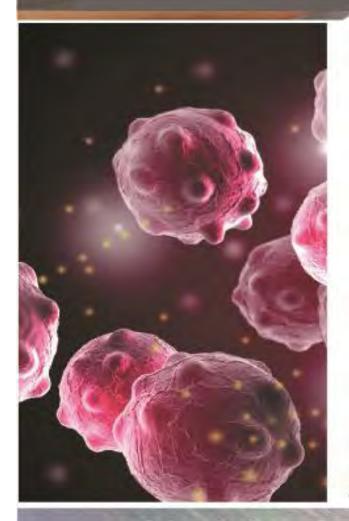
我们有机会使环境更加健康、清洁。

没有清洁和消毒鼠标和键盘的 习惯.

鼠标键盘市场年消耗量约2亿个.

鼠标和键盘成为医院内病菌滋生地.

鼠标键盘上常见细菌


细菌类型	网吧	办公室	。 家庭
金黄色酿脓葡萄球	30%	19%	5%
大肠杆菌	20%	12%	4%

2011/10/23 《非洲微生物研究》5(23)卷, pp.3998-4003

2007年2月美国哥伦比亚区一所小学爆发诺瓦克病毒传染

2007年2月8日,哥伦比亚区卫生局得到通知,一所小学27名学生发生急性肠胃炎。

传染原因: 学校电脑鼠标被诺瓦克病毒亚型 GII 污染.

这是第一次在电脑键盘和鼠标上发现诺瓦克病毒的报道,高度说明了电脑设备在疾病传播中的作用。

美国哥伦比亚 2007 年2 月

http://www.cdc.gov/mmwr/preview/mmwrhtml/mm5651a2.htm

使用铜制鼠标和键盘**可能有助于减少传染性疾病的**。 **传播**

"医院病房测试表明,相比其他材料,例如塑料或不锈钢, 使用铜制鼠标和键盘能减少物体表面 90%-100%病菌及有 害微生物"

2010年5月4日,智利卡拉马临床医院

来源: Mineria Chile

在ICU病房, 电脑键盘和鼠标是病菌集中地

在 ICU 病房,病原菌在电脑键盘和鼠标上的繁殖率相 比在其他物体表面上更快、更高。

鼠标成为病菌传播的蓄积地,成为 ICU 病房内交叉感染的途径。

2004年2月,吉森大学医院

电脑键盘和鼠标采用 INCOPPER®专利技术的好处

消除细菌、病毒和真菌

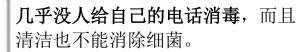
减少由于在网吧、学校、大学等公共区域使用鼠标和键盘而引起的传染性疾病。

避免鼠标和键盘成为医院(接待台、ICU等)致病菌和危险菌滋生地

应用 Incopper ®抗菌效果持久

应用 INCOPPER®专利技术的抗菌手机

为什么必须使用 INCOPPER®专利技术?



手机上的细菌数量比马桶座圈 上的多 10 倍以上。

> 手机是**传播病毒和细菌 的工具,导致各种病菌传 染**,例如大肠杆菌、伤寒 沙门氏菌和金黄色葡萄 球菌.

80%传染来自接触。

地球上手机比人还多

ICU 病房禁止使用手机,因为手机带菌。

不仅容易污染,而且容易扩大污染!!!

不仅容易污染,而且容易扩大污染!!!

医务人员手机上的细菌

- -

背景: 这项研究的目标是 了解医务人员手机、手术 室和 ICU 病房内医务人 员手上的细菌污染率。

方法:从 200 名医务人员 参与者手上和 200 只手 机上提取细菌样本进行 培养。

医务人员手机上的细菌

研究结果:

总计 **94.5%**的手机被**不同类型的细菌污染**。发现的细菌有:

- ⇒ 抗头孢他啶菌: **39.5%**,
- ⇒ 金黄色葡萄球菌: **52%** (37.7%耐甲氧西林)

从手机上分离出的微生物分布与手上的类似。

结论:

医务人员手和手机上被各种微生物污染。

医务人员使用的手机 可能是院内传染源。

临床微生物学和抗菌剂年 鉴,2009,8:7

英国 12 个城市的研究

采用 **390** 个手机样本,并检测手机主人手上的细菌

结果:

手机:

92%

被污染

手:

82%

有细菌

16%

手机上有大肠杆菌

伦敦大学,玛丽王后伦敦卫生与热带医学院 (London School of Hygiene & Tropical Medicine at Queen Mary, University of London)

应用 INCOPPER®专利技术的好处

消除物体表面的细菌、病毒和真菌。

保护自己, 防止传染

防止传染扩散

避免成为医院(接待台、医护人员、病人等)致病菌和危险菌滋生地

